The continuum of HIV care and population viral load (PVL) among a representative sample of gay, bisexual and other men who have sex with men (MSM) in Nairobi, Kenya

Adrian D Smith1, Rhoda Kabuti2, Mary Kung’u2, Erastus Irungu2, Peter Muthoga2, Amos Mugambi, Chrispo Nyamweya2, Peter Weatherburn1, Elizabeth Fearon1, Adam Bourn1, Joshua Kimani2,3 and the TRANSFORM Study group

1Department of Population Health, University of Oxford, Oxford OX2 8SP; 2Public Health and Development, UNITED Building Kenyatta National Hospital, Nairobi, Kenya; 3London School of Hygiene and Tropical Medicine, Department of Public Health, Environmental and Social, 21-27 Tavistock Place, London, WC1H 9SH, United Kingdom; 4Australian Research Centre in Sex, Health & Society, La Trobe University, Melbourne, VIC 3086, Australia; 5Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada

The continuum of HIV care and population viral load (PVL) among a representative sample of gay, bisexual and other men who have sex with men (MSM) in Nairobi, Kenya

Background

The UNAIDS 90-90-90 targets are central to Kenya’s National AIDS Control Strategy. MSM are a key population in Kenya yet criminalisation and discrimination present obstacles to care engagement.

Study aim

This study set out to assess for the first time the continuum of HIV care among a representative sample of MSM in Nairobi.

Method

Respondent-driven sampling (RDS) was employed to recruit 618 MSM between April-November 2017. Eligibility criteria were age 18+, male gender at birth or currently, Nairobi residence and consensual oral or anal intercourse with a male partner in the last 12 months.

Prevalent HIV care continuum measures included HIV testing history, timing of diagnosis, care linkage within 3 months, retention in care (12 months) and current ART use as per CDC guidelines.

Information was self-reported on a computer-assisted survey, and verified during interview with the study clinician.

HIV status was established using rapid diagnostic tests (RDT) Determine™ HIV-1/2 Ag/Ab & First Response™ HIV-1-2-0 (per Kenya National guidelines followed by PCR Xpert™ HIV-1 Qual).

Where applicable participants were linked to care and viral load was quantified using Xpert™ HIV-1 Viral Load. Virological suppression was defined as <200 copies/ml.

Total and geometric mean viral load and proportion of HIV positive participants with a viral load of >50,000 copies/ml were used as metrics of population viral load. Where applicable, viral load was estimated as half the lower limit of detection of Xpert™ HIV-1 Viral Load (quoted as 40 copies/ml).

Measures were adjusted for RDS sampling using the RDS-ii method. Viral loads were treated as count distributions, and variance approximated from the negative binomial distribution.

Results

HIV status

28.7% (21.4-37.3) participants were HIV positive (186/617)

- 96.8% (90.6-98.9) positive RDTs (183/186)
- 3.2% (1.0-9.4) positive on PCR only (3/186)

HIV care continuum (figure)

Of HIV positive participants

- 71.3% (62.7-78.6) currently receiving antiretroviral therapy
- 59.5% (50.7-67.7) attended clinical HIV services in the last year
- 51.7% (43.0-60.2) VL<200 copies/ml (102/186)

In relation to UNAIDS 90-90-90 targets, these findings represent 71-83-83

Linkage to care

Among men aware of their diagnosis

- 94.9% (88.7-97.8) reported linkage to a care provider within 3 months of diagnosis (118/129)
- 65.8% (54.3-75.8) started ART within two weeks of diagnosis (76/111)

Retention in care

94.9% (88.7-97.8) reported attending clinical HIV services in the last year (121/127)

- Public clinic: 37.0%
- Private clinic: 21.5%
- MSM-specific service: 41.2%

Satisfaction with care

Satisfaction with current HIV care provider was high irrespective of the type of provider: the proportion of men quite/highly satisfied with current provider (p=0.196)

- Public clinic: 97.8%
- Private clinic: 93.9%
- MSM-specific service: 100%

Population viral load

Among all MSM living with HIV

- Geometric mean VL was 826 (409-1668) copies/ml
- Proportion with viral loads >50,000 copies/ml was 21.0% (14.9-28.7)

Among all MSM

- Geometric mean VL was 5.8 (4.2-8.0) copies/ml
- Proportion with viral loads >50,000 copies/ml was 5.5% (3.9-7.9)

Undiagnosed HIV infection, and particularly early HIV infection, accounted for the vast majority of population viral load.

Table: Proportion of total population viral load, mean viral load and proportion of HIV positive participants by method of HIV diagnosis, awareness of HIV diagnosis and current use of ART (Nairobi MSM, Kenya 2017)

<table>
<thead>
<tr>
<th>Method</th>
<th>Mean individual viral load†</th>
<th>VL >50K copies/ml</th>
<th>Proportion of total PVL†</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDT</td>
<td>(95% CI)</td>
<td>(95% CI)</td>
<td></td>
</tr>
<tr>
<td>Positive RDT only</td>
<td>5.4 x 10^4 (2.8 x 10^4 - 1.5 x 10^5)</td>
<td>66.7</td>
<td>43.0</td>
</tr>
<tr>
<td>Positive RDT</td>
<td>4.9 x 10^4 (2.5 x 10^4 - 1.1 x 10^5)</td>
<td>53.5</td>
<td>41.1</td>
</tr>
<tr>
<td>RDT and PCR</td>
<td>5.1 x 10^4 (2.7 x 10^4 - 8.6 x 10^3)</td>
<td>53.5</td>
<td>41.1</td>
</tr>
</tbody>
</table>

Figure: HIV diagnosis, care and treatment engagement among MSM in Nairobi, Kenya (2017)

Conclusion

The continuum of HIV care for MSM/TG is remarkably strong despite potential obstacles to care engagement. This compares favourably to continuum estimates among MSM in other LMIC settings and to the general adult population in Kenya.

HIV diagnosis represents the weakest link in the current continuum of care for MSM in Nairobi, and undiagnosed HIV accounts for over 80% of total population viral load. Approaches to increase testing access and frequency among MSM should be prioritised.

A small but potentially highly significant proportion of MSM with early HIV infection are not diagnosed using the current Kenyan HIV rapid test algorithm which includes 4th generation capability. The cost-effectiveness of point of care PCR diagnostics should be evaluated.

RDS is an effective approach to recruit a population representative sample to estimate the prevalent care continuum and population viral load.

Acknowledgements: We acknowledge and thank the people who have generously participated in this research, including people living with HIV. We are also grateful to our community-based organization partners - Anova (South Africa), ISHTAR, GALE, HOYMAS (Kenya) and other members of study teams at Wits RHI, PHDA and LSHTM. TRANSFORM was funded by Evidence for HIV Prevention in Southern Africa (EPHPa), a UK aid programme managed by Mott MacDonald.